135 research outputs found

    Interpretation of increased energetic particle flux measurements by SEPT aboard the STEREO spacecraft and contamination

    Full text link
    Context. Interplanetary (IP) shocks are known to be accelerators of energetic charged particles observed in-situ in the heliosphere. However, the acceleration of near-relativistic electrons by shocks in the interplanetary medium is often questioned. On 9 August 2011 a Corotating Interaction Region (CIR) passed STEREO B (STB) that resulted in a flux increase in the electron and ion channels of the Solar Electron and Proton Telescope (SEPT). Because electron measurements in the few keV to several 100 keV range rely on the so-called magnet foil technique, which is utilized by SEPT, ions can contribute to the electron channels. Aims. We aim to investigate whether the flux increase in the electron channels of SEPT during the CIR event on 9 August 2011 is caused by ion contamination only. Methods. We compute the SEPT response functions for protons and helium utilizing an updated GEANT4 model of SEPT. The CIR energetic particle ion spectra for protons and helium are assumed to follow a Band function in energy per nucleon with a constant helium to proton ratio. Results. Our analysis leads to a helium to proton ratio of 16.9% and a proton flux following a Band function with the parameters I0=1.24⋅104I_0 = 1.24 \cdot 10^4 / (cm2 s sr MeV/nuc.), Ec=79E_c = 79 keV/nuc. and spectral indices of γ1=−0.94\gamma_1 = -0.94 and γ2=−3.80\gamma_2 = -3.80 which are in good agreement with measurements by the Suprathermal Ion Telescope (SIT) aboard STB. Conclusions. Since our results explain the SEPT measurements, we conclude that no significant amount of electrons were accelerated between 5555 keV and 425425 keV by the CIR

    Self-consistent modeling of the energetic storm particle event of November 10, 2012

    Full text link
    It is thought that solar energetic ions associated with coronal/interplanetary shock waves are accelerated to high energies by the diffusive shock acceleration mechanism. For this mechanism to be efficient, intense magnetic turbulence is needed in the vicinity of the shock. The enhanced turbulence upstream of the shock can be produced self-consistently by the accelerated particles themselves via streaming instability. Comparisons of quasi-linear-theory-based particle acceleration models that include this process with observations have not been fully successful so far, which has motivated the development of acceleration models of a different nature. The aim of this work is to test how well our self-consistent quasi-linear SOLar Particle Acceleration in Coronal Shocks (SOLPACS) simulation code, developed earlier to simulate proton acceleration in coronal shocks, models the particle foreshock region. We applied SOLPACS to model the energetic storm particle (ESP) event observed by the STEREO A spacecraft on November 10, 2012. In the simulations, all but one main input parameter of SOLPACS are fixed by the in-situ plasma measurements from the spacecraft. By comparing a simulated proton energy spectrum at the shock with the observed one, we were able to fix the last simulation input parameter related to the efficiency of particle injection to the acceleration process. A subsequent comparison of simulated proton time-intensity profiles in a number of energy channels with the observed ones shows a very good correspondence throughout the upstream region

    Statistical results for solar energetic electron spectra observed over 12 yr with STEREO/SEPT

    Get PDF
    This work presents a statistical analysis of near-relativistic solar energetic electron event spectra near 1 au. We use measurements of the Solar Electron and Proton Telescope (SEPT) on board STEREO in the energy range of 45–425 keV and utilize the SEPT electron event list containing all electron events observed by STEREO A and STEREO B from 2007 through 2018. We select 781 events with significant signal-to-noise ratios for our analysis and fit the spectra with single or broken-power-law functions of energy. We find 437 events showing broken power laws and 344 events only showing a single power law in the energy range of SEPT. For those events with broken power laws, we find a mean break energy of about 120 keV. We analyze the dependence of the spectral index on the rise times and peak intensities of the events as well as on the presence of relativistic electrons. The results show a relation between the power law spectral index and the rise times of the events with softer spectra belonging to rather impulsive events. Long rise-time events are associated with hard spectra as well as with the presence of higher-energy (>0.7 MeV) electrons. This group of events cannot be explained by a pure flare scenario but suggests an additional acceleration mechanism, involving a prolonged acceleration and/or injection of the particles. A dependence of the spectral index on the longitudinal separation from the parent solar source region was not found. A statistical analysis of the spectral indices during impulsively rising events where the rise times are below 20 minutes is also shown.Agencia Estatal de Investigació

    Single-spacecraft techniques for shock parameters estimation : A systematic approach

    Get PDF
    Spacecraft missions provide the unique opportunity to study the properties of collisionless shocks utilising in situ measurements. In the past years, several diagnostics have been developed to address key shock parameters using time series of magnetic field (and plasma) data collected by a single spacecraft crossing a shock front. A critical aspect of such diagnostics is the averaging process involved in the evaluation of upstream/downstream quantities. In this work, we discuss several of these techniques, with a particular focus on the shock obliquity (defined as the angle between the upstream magnetic field and the shock normal vector) estimation. We introduce a systematic variation of the upstream/downstream averaging windows, yielding to an ensemble of shock parameters, which is a useful tool to address the robustness of their estimation. This approach is first tested with a synthetic shock dataset compliant with the Rankine-Hugoniot jump conditions for a shock, including the presence of noise and disturbances. We then employ self-consistent, hybrid kinetic shock simulations to apply the diagnostics to virtual spacecraft crossing the shock front at various stages of its evolution, highlighting the role of shock-induced fluctuations in the parameters' estimation. This approach has the strong advantage of retaining some important properties of collisionless shock (such as, for example, the shock front microstructure) while being able to set a known, nominal set of shock parameters. Finally, two recent observations of interplanetary shocks from the Solar Orbiter spacecraft are presented, to demonstrate the use of this systematic approach to real events of shock crossings. The approach is also tested on an interplanetary shock measured by the four spacecraft of the Magnetospheric Multiscale (MMS) mission. All the Python software developed and used for the diagnostics (SerPyShock) is made available for the public, including an example of parameter estimation for a shock wave recently observed in-situ by the Solar Orbiter spacecraft.Peer reviewe

    Connecting solar flare hard X-ray spectra to in situ electron spectra A comparison of RHESSI and STEREO/SEPT observations

    Get PDF
    Aims. We aim to constrain the acceleration, injection, and transport processes of flare-accelerated energetic electrons by comparing their characteristics at the Sun with those injected into interplanetary space.Methods. We have identified 17 energetic electron events well-observed with the SEPT instrument aboard STEREO which show a clear association with a hard X-ray (HXR) flare observed with the RHESSI spacecraft. We compare the spectral indices of the RHESSI HXR spectra with those of the interplanetary electrons. Because of the frequent double-power-law shape of the in situ electron spectra, we paid special attention to the choice of the spectral index used for comparison.Results. The time difference between the electron onsets and the associated type III and microwave bursts suggests that the electron events are detected at 1 AU with apparent delays ranging from 9 to 41 min. While the parent solar activity is clearly impulsive, also showing a high correlation with extreme ultraviolet jets, most of the studied events occur in temporal coincidence with coronal mass ejections (CMEs). In spite of the observed onset delays and presence of CMEs in the low corona, we find a significant correlation of about 0.8 between the spectral indices of the HXR flare and the in situ electrons. The correlations increase if only events with significant anisotropy are considered. This suggests that transport effects can alter the injected spectra leading to a strongly reduced imprint of the flare acceleration.Conclusions. We conclude that interplanetary transport effects must be taken into account when inferring the initial acceleration of solar energetic electron events. Although our results suggest a clear imprint of flare acceleration for the analyzed event sample, a secondary acceleration might be present which could account for the observed delays. However, the limited and variable pitch-angle coverage of SEPT could also be the reason for the observed delays

    Circumsolar energetic particle distribution on 2011 November 3

    Get PDF
    Late on 2011 November 3, STEREO-A, STEREO-B, MESSENGER, and near-Earth spacecraft observed an energetic particle flux enhancement. Based on the analysis of in situ plasma and particle observations, their correlation with remote sensing observations, and an interplanetary transport model, we conclude that the particle increases observed at multiple locations had a common single source active region and the energetic particles filled a very broad region around the Sun. The active region was located at the solar backside (as seen from Earth) and was the source of a large flare, a fast and wide coronal mass ejection, and an EIT wave, accompanied by type II and type III radio-emission. In contrast to previous solar energetic particle events showing broad longitudinal spread, this event showed clear particle anisotropies at three widely separated observation points at 1AU, suggesting direct particle injection close to the magnetic footpoint of each spacecraft, lasting for several hours.We discuss these observations and the possible scenarios explaining the extremely broad particle spread for this event

    SEPServer catalogues of solar energetic particle events at 1 AU based on STEREO recordings: 2007–2012

    Get PDF
    The Solar Terrestrial Relations Observatory (STEREO) recordings provide an unprecedented opportunity to study the evolution of solar energetic particle (SEP) events from different observation points in the heliosphere, allowing one to identify the effects of the properties of the interplanetary magnetic field (IMF) and solar wind structures on the interplanetary transport and acceleration of SEPs. Two catalogues based on STEREO recordings, have been compiled as a part of the SEPServer project, a three-year collaborative effort of eleven European partners funded under the Seventh Framework Programme of the European Union (FP7/SPACE). In particular, two instruments on board STEREO have been used to identify all SEP events observed within the descending phase of solar cycle 23 and the rising phase of solar cycle 24 from 2007 to 2012, namely: the Low Energy Telescope (LET) and the Solar Electron Proton Telescope (SEPT). A scan of STEREO/LET protons within the energy range 6–10 MeV has been performed for each of the two STEREO spacecraft. We have tracked all enhancements that have been observed above the background level of this particular channel and cross-checked with available lists of interplanetary coronal mass ejections (ICMEs), stream interaction regions (SIRs), and shocks, as well as with the reported events in literature. Furthermore, parallel scanning of the STEREO near relativistic electrons has been performed in order to pinpoint the presence (or absence) of an electron event in the energy range of 55–85 keV, for all of the aforementioned proton events included in our lists. We provide the onset and peak time as well as the peak value of all events for both protons and electrons, the relevant solar associations in terms of electromagnetic emissions, soft and hard X-rays (SXRs and HXRs). Finally, a subset of events with clear recordings at both STEREO spacecraft is presented together with the parent solar events of these multispacecraft SEP events

    Solar energetic electron events measured by MESSENGER and Solar Orbiter. Peak intensity and energy spectrum radial dependences: statistical analysis

    Get PDF
    Context/Aims: We present a list of 61 solar energetic electron (SEE) events measured by the MESSENGER mission and the radial dependences of the electron peak intensity and the peak-intensity energy spectrum. The analysis comprises the period from 2010 to 2015, when MESSENGER heliocentric distance varied between 0.31 and 0.47 au. We also show the radial dependencies for a shorter list of 12 SEE events measured in February and March 2022 by spacecraft near 1 au and by Solar Orbiter around its first close perihelion at 0.32 au. Results: Due to the elevated background intensity level of the particle instrument on board MESSENGER, the SEE events measured by this mission are necessarily large and intense; most of them accompanied by a CME-driven shock, being widespread in heliolongitude, and displaying relativistic (∼\sim1 MeV) electron intensity enhancements. The two main conclusions derived from the analysis of the large SEE events measured by MESSENGER, which are generally supported by Solar Orbiter's data results, are: (1) There is a wide variability in the radial dependence of the electron peak intensity between ∼\sim0.3 au and ∼\sim1 au, but the peak intensities of the energetic electrons decrease with radial distance from the Sun in 27 out of 28 events. On average and within the uncertainties, we find a radial dependence consistent with R−3R^{-3}. (2) The electron spectral index found in the energy range around 200 keV (δ\delta200) of the backward-scattered population near 0.3 au measured by MESSENGER is harder in 19 out of 20 (15 out of 18) events by a median factor of ∼\sim20% (∼\sim10%) when comparing to the anti-sunward propagating beam (backward-scattered population) near 1 au.Comment: 20 pages, 13 figure
    • …
    corecore